Euclid

Definition

N.S. Palmer
by
published on 23 October 2015
Available in other languages: French, Turkish
Subscribe to topic Subscribe to author Print Article
Euclid of Alexandria (by Unknown Artist, Public Domain)
Euclid of Alexandria
Unknown Artist (Public Domain)

Euclid of Alexandria (lived c. 300 BCE) systematized ancient Greek and Near Eastern mathematics and geometry. He wrote The Elements, the most widely used mathematics and geometry textbook in history. Older books sometimes confuse him with Euclid of Megara. Modern economics has been called "a series of footnotes to Adam Smith," who was the author of The Wealth of Nations (1776 CE). Likewise, much of Western mathematics has been a series of footnotes to Euclid, either developing his ideas or challenging them.

EUCLID'S LIFE

Almost nothing is known of Euclid's life. Around 300 BCE, he ran his own school in Alexandria, Egypt. We do not know the years or places of his birth and death. He seems to have written a dozen or so books, most of which are now lost.

Remove Ads
Advertisement

The philosopher Proclus of Athens (412-485 CE), who lived seven centuries later, said that Euclid "put together the Elements, collecting many of Eudoxus's theorems, perfecting many of Theaetetus's, and bringing to irrefragable demonstration things which were only somewhat loosely proved by his predecessors." The scholar Stobaeus lived at about the same time as Proclus. He collected Greek manuscripts that were in danger of being lost. He told a story about Euclid that has the ring of truth:

Someone who had begun to [study] geometry asked Euclid, 'What shall I get by learning these things?' Euclid called his slave and said, 'Give him [some money], since he must make gain out of what he learns'.

(Heath, 1981, loc. 8625)

GEOMETRY BEFORE EUCLID

In The Elements, Euclid collected, organized, and proved geometric ideas that were already used as applied techniques. Except for Euclid and some of his Greek predecessors such as Thales (624-548 BCE), Hippocrates (470-410 BCE), Theaetetus (417-369 BCE), and Eudoxus (408-355 BCE), hardly anyone had tried to figure out why the ideas were true or if they applied in general. Thales even became a celebrity in Egypt because he could see the mathematical principles behind rules for specific problems, then apply the principles to other problems such as determining the height of the pyramids.

Remove Ads
Advertisement

The ancient Egyptians knew a lot of geometry, but only as applied methods based on testing and experience. For example, to calculate the area of a circle, they made a square whose sides were eight-ninths the length of the circle's diameter. The area of the square was close enough to the area of the circle that they could not detect any difference. Their method implies that pi has a value of 3.16, slightly off its true value of 3.14... but close enough for simple engineering. Most of what we know about ancient Egyptian mathematics comes from the Rhind Papyrus, discovered in the mid-19th century CE and now kept in the British Museum.

Ancient Babylonians also knew a lot of applied mathematics, including the Pythagorean theorem. Archaeological excavations at Nineveh discovered clay tablets with number triplets satisfying the Pythagorean theorem, such as 3-4-5, 5-12-13, and with considerably larger numbers. As of 2006 CE, 960 of the tablets had been deciphered.

Remove Ads
Advertisement

First English version of Euclid's Elements, 1570
First English version of Euclid's Elements, 1570
Charles Thomas-Stanford (Public Domain)

THE ELEMENTS

Euclid did not originate most of the ideas in The Elements. His contribution was fourfold:

  • He collected important mathematical and geometric knowledge in one book. The Elements is a textbook rather than a reference book, so it does not cover everything that was known.
  • He gave definitions, postulates, and axioms. He called axioms "common notions."
  • He presented geometry as an axiomatic system: Every statement was either an axiom, a postulate, or was proven by clear logical steps from axioms and postulates.
  • He gave some of his own original discoveries, such as the first known proof that there are infinitely many prime numbers.

The Elements has 13 chapters (often called "books"), divided into three main sections:

Chapters 1-6: Plane geometry.
Chapters 7-10: Arithmetic and number theory.
Chapters 11-13: Solid geometry.

Every chapter begins with definitions. Chapter 1 also includes postulates and "common notions" (axioms). Examples are:

Definition: "A point is that which has no part."
Postulate: "To draw a straight line from any point to any point." (That's Euclid's way of saying straight lines exist.)
Common Notion: "Things equal to the same thing are also equal to each other."

If the ideas seem obvious, that's the point. Euclid wanted to base his geometry on ideas so obvious that no one could reasonably doubt them. From his definitions, postulates, and common notions, Euclid deduces the rest of geometry. His geometry describes the normal space we see around us. Modern 'non-Euclidean' geometries describe space over astronomical distances, at near-light speeds, or warped by gravity.

Remove Ads
Advertisement

Fragment of Euclid's Elements
Fragment of Euclid's Elements
Jitse Niesen (CC BY)

EUCLID'S OTHER WORKS

About half of Euclid's works are lost. We only know about them because other ancient writers refer to them. Lost works include books on conic sections, logical fallacies, and "porisms." We're not sure what porisms were. Euclid's works that still exist are The Elements, Data, Division of Figures, Phenomena, and Optics. In his book about optics, Euclid argued for the same theory of vision as the Christian philosopher St. Augustine.

EUCLID'S INFLUENCE

From ancient times to the late 19th century CE, people considered The Elements as a perfect example of correct reasoning. More than a thousand editions have been published, making it one of the most popular books after theBible. The 17th-century CE Dutch philosopher Baruch de Spinoza modeled his book Ethics on The Elements, using the same format of definitions, postulates, axioms, and proofs. In the 20th century, the Austrian economist Ludwig von Mises adopted Euclid's axiomatic method to write about economics in his book Human Action.

Did you like this definition?
Editorial Review This article has been reviewed by our editorial team before publication to ensure accuracy, reliability and adherence to academic standards in accordance with our editorial policy.
Remove Ads
Advertisement

Bibliography

  • Artmann, B. Euclid: The Creation of Mathematics. Springer, New York, 1991
  • Boyer, C. and Merzbach, U. A History of Mathematics. John Wiley & Sons, Indianapolis, IN, 1991
  • Heath, T. A History of Greek Mathematics. Dover Publications, Mineola, NY, 1981
  • Heath, T. Euclid: The Thirteen Books of The Elements. Dover Publications, Mineola, NY, 1956
  • Mlodinow, L. Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace. Touchstone, New York, 2002

Translations

French Turkish

We want people all over the world to learn about history. Help us and translate this definition into another language!

Free for the World, Supported by You

World History Encyclopedia is a non-profit organization. For only $5 per month you can become a member and support our mission to engage people with cultural heritage and to improve history education worldwide.

World History Encyclopedia is a non-profit organization. Please support free history education for millions of learners worldwide for only $5 per month by becoming a member. Thank you!

Become a Member  

Cite This Work

APA Style

Palmer, N. (2015, October 23). Euclid. World History Encyclopedia. Retrieved from https://www.worldhistory.org/Euclid/

Chicago Style

Palmer, N.S.. "Euclid." World History Encyclopedia. Last modified October 23, 2015. https://www.worldhistory.org/Euclid/.

MLA Style

Palmer, N.S.. "Euclid." World History Encyclopedia. World History Encyclopedia, 23 Oct 2015. Web. 20 Nov 2024.

Membership